Convex and star-shaped sets associated with stable distributions

نویسنده

  • Ilya Molchanov
چکیده

It is known that each symmetric stable distribution in Rd is related to a norm on Rd that makes Rd embeddable in Lp([0, 1]). In case of a multivariate Cauchy distribution the unit ball in this norm corresponds is the polar set to a convex set in Rd called a zonoid. This work exploits most recent advances in convex geometry in order to come up with new probabilistic results for multivariate stable distributions. In particular, it provides expressions for moments of the Euclidean norm of a stable vector, mixed moments and various integrals of the density function. It is shown how to use geometric inequalities in order to bound important parameters of stable laws. Furthermore, covariation, regression and orthogonality concepts for stable laws acquire geometric interpretations. A similar collection of results is presented for one-sided stable laws.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Convex and star-shaped sets associated with multivariate stable distributions, I: Moments and densities

It is known that each symmetric stable distribution in Rd is related to a norm on Rd that makes Rd embeddable in Lp([0, 1]). In case of a multivariate Cauchy distribution the unit ball in this norm is the polar set to a convex set in Rd called a zonoid. This work interprets general stable laws using convex or star-shaped sets and exploits recent advances in convex geometry in order to come up w...

متن کامل

Optimality conditions for Pareto efficiency and proper ideal point in set-valued nonsmooth vector optimization using contingent cone

In this paper, we first present a new important property for Bouligand tangent cone (contingent cone) of a star-shaped set. We then establish optimality conditions for Pareto minima and proper ideal efficiencies in nonsmooth vector optimization problems by means of Bouligand tangent cone of image set, where the objective is generalized cone convex set-valued map, in general real normed spaces.

متن کامل

Invariant Valuations on Star-Shaped Sets

The Brunn Minkowski theory of convex bodies and mixed volumes has provided many tools for solving problems involving projections and valuations of compact convex sets in Euclidean space. Among the most beautiful results of twentieth century convexity is Hadwiger's characterization theorem for the elementary mixed volumes (Quermassintegrals); (see [3, 5, 9]). Hadwiger's characterization leads to...

متن کامل

Thin Partitions: Isoperimetric Inequalities and Sampling Algorithms for some Nonconvex Families

Star-shaped bodies are an important nonconvex generalization of convex bodies (e.g., linear programming with violations). Here we present an efficient algorithm for sampling a given star-shaped body. The complexity of the algorithm grows polynomially in the dimension and inverse polynomially in the fraction of the volume taken up by the kernel of the star-shaped body. The analysis is based on a...

متن کامل

The Minimal Robust Positively Invariant Set for Linear Difference Inclusions and its Robust Positively Invariant Approximations

Robust positively invariant (RPI) sets for linear difference inclusions are considered here under the assumption that the linear difference inclusion is absolutely asymptotically stable in the absence of additive state disturbances, which is the case for parametrically uncertain or switching linear discrete-time systems controlled by a stabilizing linear state feedback controller. The existence...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008